Diminish Muscle Fatigue

C 60 Fullerenes Diminish Muscle Fatigue in Rats Comparable to N-acetylcysteine or β-Alanine

Inna V Vereshchaka 1, Nataliya V Bulgakova 2, Andriy V Maznychenko 2, Olga O Gonchar 3, Yuriy I Prylutskyy 4, Uwe Ritter 5, Waldemar Moska 1, Tomasz Tomiak 1, Dmytro M Nozdrenko 4, Iryna V Mishchenko 6, Alexander I Kostyukov 2 , Olena A. Kyzyma1,4, Uwe Ritter5 , Peter Scharff5 , Tomasz Tomiak6 , Dmytro M. Nozdrenko1 , Iryna V. Mishchenko7 and Alexander I. Kostyukov2

The aim of this study is to detect the effects of C60 fullerenes, which possess pronounced antioxidant properties, in comparison with the actions of the known exogenous antioxidants N-acetylcysteine (NAC) and β-Alanine in terms of exercise tolerance and contractile property changes of the m. triceps surae (TS) during development of the muscle fatigue in rats. 

Oral C60FAS administration clearly demonstrated an action on skeletal muscle fatigue development similar to the effects of i.p. injections of the exogenous antioxidants NAC or β-Alanine. This creates opportunities to oral use of C60FAS as a potential therapeutic agent. Due to the membranotropic activity of C60 fullerenes, non-toxic C60FAS has a more pronounced effect on the prooxidant-antioxidant homeostasis of muscle tissues in rats.

Prevent Muscle Fatigue

C60 fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue

Yurij I. Prylutskyy1 , Inna V. Vereshchaka2 , Andriy V. Maznychenko2*, Nataliya V. Bulgakova2 , Olga O. Gonchar3 , Olena A. Kyzyma1,4, Uwe Ritter5 , Peter Scharff5 , Tomasz Tomiak6 , Dmytro M. Nozdrenko1 , Iryna V. Mishchenko7 and Alexander I. Kostyukov2

Abstract
Background: Bioactive soluble carbon nanostructures, such as the C60 fullerene can bond with up to six electrons, thus serving by a powerful scavenger of reactive oxygen species similarly to many natural antioxidants, widely used
to decrease the muscle fatigue effects. The aim of the study is to define action of the pristine e C60 fullerene aqueous colloid solution (C60FAS), on the post-fatigue recovering of m. triceps surae in anaesthetized rats.
Conclusions: C60FAS leads to reduction in the recovery time of the muscle contraction force and to increase in the time of active muscle functioning before appearance of steady fatigue effects. Therefore, it is possible that C60FAS affects the prooxidant-antioxidant muscle tissue homeostasis, subsequently increasing muscle endurance