Anti-Influenza Activity of C60 Fullerene Derivatives

Masaki Shoji, 1 Etsuhisa Takahashi, 2 Dai Hatakeyama, 1 Yuma Iwai, 1 Yuka Morita, 1 Riku Shirayama, 1 Noriko Echigo, 1 Hiroshi Kido, 2 Shigeo Nakamura, 3 Tadahiko Mashino, 4 Takeshi Okutani, 1 and Takashi Kuzuhara 1 , *

The H1N1 influenza A virus, which originated in swine, caused a global pandemic in 2009, and the highly pathogenic H5N1 avian influenza virus has also caused epidemics in Southeast Asia in recent years. Thus, the threat from influenza A remains a serious global health issue, and novel drugs that target these viruses are highly desirable. Influenza A RNA polymerase consists of the PA, PB1, and PB2 subunits, and the N-terminal domain of the PA subunit demonstrates endonuclease activity.

In a cell culture system, we found that several fullerene derivatives inhibit influenza A viral infection and the expression of influenza A nucleoprotein and nonstructural protein 1. These results indicate that fullerene derivatives are possible candidates for the development of novel anti-influenza drugs.

Protects Nerves

Carboxyfullerenes as neuroprotective agents

L L Dugan 1, D M Turetsky, C Du, D Lobner, M Wheeler, C R Almli, C K Shen, T Y Luh, D W Choi, T S Lin

Two regioisomers with C3 or D3 symmetry of water-soluble carboxylic acid C60 derivatives, containing three malonic acid groups per molecule, were synthesized and found to be equipotent free radical scavengers in solution as assessed by EPR analysis. 

Prevents UV Damage

Fullerene-C60/liposome complex: Defensive effects against UVA-induced damages in skin structure, nucleus and collagen type I/IV fibrils, and the permeability into human skin tissue

Shinya Kato 1, Hisae Aoshima, Yasukazu Saitoh, Nobuhiko Miwa

 In the present study, Lpsm-Flln was administered on the surface of three-dimensional human skin tissue model, rinsed out before each UVA-irradiation at 4 J/cm(2), and thereafter added again, followed by 19-cycle-repetition for 4 days (sum: 76 J/cm(2)). UVA-caused corneum scaling and disruption of epidermis layer were detected by scanning electron microscopy. 

Protects Nerves

Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons

L L Dugan 1, J K Gabrielsen, S P Yu, T S Lin, D W Choi

Buckminsterfullerenols also reduced neuronal apoptosis induced by serum deprivation. These results support the idea that oxidative stress contributes to both excitotoxic and apoptotic neuronal death, and furthermore suggest that fullerenols represent a novel type of biological anti-oxidant compound.

Inhibit Viruses

Using C60 fullerenes for photodynamic inactivation of mosquito iridescent viruses

Yu Rud 1, L Buchatskyy, Yu Prylutskyy, O Marchenko, A Senenko, Ch Schütze, U Ritter

This article describes the photodynamic inactivation of mosquito iridescent virus (MIV) Aedes flavescens in the presence of water-soluble C(60) fullerenes. It has been observed that the photodynamic inactivation of MIV for about 1 h reduces the infectious titre of the virus in large wax-moth larvae Galleria mellonella to 4.5 lg ID(50)/mL. The influence of the C(60) concentration on its anti-viral activity was tested in the concentration range from 1 to 0.001 mg/mL.