Medicinal applications of fullerenes

Rania Bakry, Rainer M Vallant, Muhammad Najam-ul-Haq, Matthias Rainer, Zoltan Szabo, Christian W Huck, and Günther K Bonn

Compounds with antiviral activity are generally of great medical interest and different modes of pharmaceutical actions have been described. Replication of the human immunodeficiency virus (HIV) can be suppressed by several antiviral compounds, which are effective in preventing or delaying the onset of acquired immunodeficiency syndrome (AIDS). Fullerenes (C60) and their derivatives have potential antiviral activity, which has strong implications on the treatment of HIV-infection. The antiviral activity of fullerene derivatives is based on several biological properties including their unique molecular architecture and antioxidant activity.

Fullerenes have unusual redox chemistry and may be reversibly reduced by up to six electrons. These, along with the low toxicity detected so far in fullerenes, are sufficient to stimulate researchers in chemistry and in biology to unite their efforts and systematically investigate the biological properties of these fascinating molecules. A wave of research and development activities all over the world has led to large number of application-oriented patents, spanning a very broad range spectrum of potential commercial applications, including: anticancer anticancer drug delivery systems using photodynamic therapy, HIV drugs, and cosmetics to slow down the aging of human skin.


Role of Antioxidants and Natural Products in Inflammation

Palanisamy Arulselvan, 1 , * Masoumeh Tangestani Fard, 2 Woan Sean Tan, 1 Sivapragasam Gothai, 1 Sharida Fakurazi, 1 Mohd Esa Norhaizan, 3 and S. Suresh Kumar 4


Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases.


Biological Effects of C 60 Fullerene Revealed with Bacterial Biosensor-Toxic or Rather Antioxidant?

Sergey Emelyantsev 1, Evgeniya Prazdnova 2, Vladimir Chistyakov 3, Igor Alperovich 4


Nanoparticles have been attracting growing interest for both their antioxidant and toxic effects. Their exact action on cells strongly depends on many factors, including experimental conditions, preparation, and solvents used, which have contributed to the confusion regarding their safety and possible health benefits. …The ability of C60 to penetrate through biological membranes, conduct protons, and interact with free radicals is likely responsible for its protective effect detected for E. coli. Thus, fullerene can be considered as a mitochondria-targeted antioxidant, worth further researching as a prospective component of novel medications.

Disease Prevention

Comparative computational study of interaction of C60-fullerene and tris-malonyl-C60-fullerene isomers with lipid bilayer: relation to their antioxidant effect

Marine E Bozdaganyan 1, Philipp S Orekhov 1, Alexey K Shaytan 1, Konstantin V Shaitan 1


Oxidative stress induced by excessive production of reactive oxygen species (ROS) has been implicated in the etiology of many human diseases. It has been reported that fullerenes and some of their derivatives-carboxyfullerenes-exhibits a strong free radical scavenging capacity.


Carboxyfullerenes as neuroprotective agents

Laura L. Dugan, Dorothy M. Turetsky, Cheng Du, Doug Lobner, Mark Wheeler, C. Robert Almli, Clifton K.-F. Shen, Tien-Yau Luh, Dennis W. Choi, and Tien-Sung Lin

Carboxyfullerenes were able to block neuronal death in both of these apoptotic injuries. Thus, our data support the emerging concept that free radicals contribute to neuronal death in excitotoxic insults as well as injuries that result in apoptosis….Carboxyfullerenes effectively reduced neuronal death resulting from exposure to glutamate receptor agonists, NMDA or AMPA. C60 derivatives are the only class of antioxidant compounds that we have worked with to date that can fully block intense, rapidly triggered, NMDA receptor-mediated excitotoxicity in our cortical neuronal cultures.