Acne Reduction

Inhibition of sebum production and Propionibacterium acnes lipase activity by fullerenol, a novel polyhydroxylated fullerene: potential as a therapeutic reagent for acne

Shigeki Inui 1, Hisae Aoshima, Masayuki Ito, Ken Kobuko, Satoshi Itami

Abstract

Oxidative stress plays a major role in acne formation; this suggests that oxygen-radical scavengers could be potential therapeutic agents. Fullerenol C60(OH)44, a recently developed polyhydroxylated fullerene, is a spherical carbon molecule that has many hydroxyl groups capable of potent radical-scavenging activity. We have investigated its inhibitory effects in vitro on sebum production in hamster sebocytes and in Propionibacterium acnes lipase activity. Sebum production was significantly reduced by 1.5 microM of fullerenol in cells that had been irradiated with 10 mJ/cm2 UVB, although it was not altered in the non-irradiated cells, indicating that fullerene is a sebum suppressor for sebocytes under oxidative stress, such as that induced by UVB. It was also found that fullerenol has inhibitory activity against P. acnes lipase. These results suggest that fullerenol could be a beneficial skin care reagent for controlling acne vulgaris by suppressing sebum in the inflammatory response and by reducing P. acnes lipase activity.

Acne Reduction

Improvement of acne vulgaris by topical fullerene application: unique impact on skin care

Shigeki Inui 1, Hisae Aoshima, Aki Nishiyama, Satoshi Itami

Abstract

Oxidative stress plays a major role in acne formation, suggesting that oxygen radical scavengers are potential therapeutic agents. Fullerene is a spherical carbon molecule with strong radical sponge activity; therefore, we studied the effectiveness of fullerene gel in treating acne vulgaris. We performed an open trial using a fullerene gel twice a day; at 4 and 8 weeks, the mean number of inflammatory lesions (erythematous papules and pustules) significantly (P < 0.05) decreased from 16.09 ± 9.08 to 12.36 ± 7.03 (reduction rate 23.2%) and 10.0 ± 5.62 (reduction rate 37.8%), respectively. The number of pustules, consisting of accumulation of neutrophils, was significantly (P < 0.05) decreased from 1.45 ± 1.13 to 0.18 ± 0.60 (reduction rate 87.6%), and further in vitro assays of sebum production in hamster sebocytes revealed that 75 μM polyvinylpyrrolidone-fullerene inhibits sebum production, suggesting that fullerene suppresses acne through decreasing neutrophil infiltration and sebum production. After treatment for 8 weeks, the water content of the skin significantly (P < 0.05) increased from 51.7 ± 7.9 to 60.4 ± 10.3 instrumental units. Therefore, the fullerene gel may help in controlling acne vulgaris with skin care benefit.